In this work, a secure data transmission application of Antenna Number Modulation (ANM) is presented in the presence of an eavesdropper, whose received data is mixed by an interference signal superpositioned(ISS) with the original signal transmitted to the legitimate receiver.
In this paper, a novel secure data transmission method called interference signal superposition-aided multiple-input multiple-output with antenna number modulation and adaptive antenna selection (ISS-MIMO-ANM-AAS) is presented to defend transmission systems against eavesdropping attacks or to share secret information between two communication parties in scenarios, where perfect secrecy and ultimate confidentiality are required to be achieved. In the proposed method, while data is transmitted to the legitimate receiver by exploiting the features of MIMO-ANM through transmitting additional data bits with the number of active antennas along with those bits sent by using conventional M-PSK/QAM modulation, the data that the eavesdropper receives is aimed to be mixed by an interference signal superposed (ISS) with the original signal to eliminate the possible wiretapping activities. The conducted theoretical analysis along with the obtained numerical simulations for the proposed ISS-MIMO-ANM-AAS method proves the effectiveness of the scheme, where MIMO-ANM transmission is shown to be fully secured through the ISS algorithm. Thus, the introduced ISS-MIMO-ANM-AAS method can be considered a strong potential candidate method for scenarios where ultra-security is the main requirement of wireless systems including WiFi, 5G, 6G, and beyond technologies.
Keywords: MIMO, MIMO-ANM-AAS, ISS, antenna number modulation, adaptive antenna selection, interference signal superposition, wireless security, secrecy, wireless communication, 5G, 6G.